

Today's Learning Goals:

- Find cube roots of perfect cubes.
- Evaluate expressions involving cube roots.
- Use cube roots to solve equations.

Perfect Cubes

Perfect Cubes that you should memorize

1 ³	4 ³	7^{3}
2^3	5 ³	8 ³
3 ³	6 ³	9 ³
		10 ³

Cube Roots

Perfect Cube Roots that you should memorize

3√1	3√64	3√343
3√8	∛125	∛512
∛27	∛216	∛729
		3√1000

Do Now

Find the edge length of the cube.

1. Volume = 64,000 ft³ **2.** Volume =
$$\frac{1}{216}$$
 ft³

Finding Cube Roots

Find each cube root.

a. $\sqrt[3]{8}$

b. $\sqrt[3]{-27}$

Evaluating with Cube Roots

Evaluate each expression.

a.
$$2\sqrt[3]{-216} - 3$$

PE(R)MDAS

b.
$$(\sqrt[3]{125})^3 + 21$$

On Your Own

Find the cube roo 1. $\sqrt[3]{1}$	2. $\sqrt[3]{-343}$	3. $\sqrt[3]{-\frac{27}{1000}}$
Evaluate the expr	ession.	

4.	$18 - 4\sqrt[3]{8}$	5. $(\sqrt[3]{-64})^3 + 43$	6. 51	$\sqrt[3]{512} - 19$
----	---------------------	-----------------------------	--------------	----------------------

Evaluating with Cube Roots

Evaluate $\frac{x}{4} + \sqrt[3]{\frac{x}{3}}$ when x = 192.

On Your Own

7.

Evaluate the expression for the given value of the variable.

$$\sqrt[3]{8y} + y, y = 64$$
 8. $2b - \sqrt[3]{9b}, b = -3$

Critical Thinking...

Find the surface area of the baseball display case.

With Your Partner

9. The volume of a music box that is shaped like a cube is 512 cubic centimeters. Find the surface area of the music box.

Did You Understand?

Explain the difference between $\sqrt{64}$ and $\sqrt[3]{64}.$